Adjacent Equilibria in Highly Flexible Upright Loop on Rigid Foundation

Abstract

For very slender structural components, self-weight may compete with elastic flexural stiffness in determining equilibrium configurations. In cases where the inherent elastic stiffness is low (relative to self-weight) we observe a variety of types of highly nonlinear behavior in the equilibrium shapes, together with changes in the natural frequencies of small oscillations about these equilibrium configurations. This technical note describes a specific phenomenon observed in experiments on very slender polycarbonate loops. In addition to profound changes in equilibrium shapes as a function of weight-to-stiffness ratio, under some circumstances it is possible to have two adjacent, co-existing equilibrium configurations. This robust, highly nonlinear snap-through behavior is demonstrated by perturbing from one shape to the other.

DOI
10.1007/s11340-015-0011-7
Year