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Basic Issues



Preamble

We are all familiar with the classical wave equation for a string:

∂2w

∂x2
=

1

c2s

∂2w

∂t2
, (1)

where cs =
√
τ/ρ is a constant. Thus the tension τ (a positive force) is

an integral part of the system.
We immediately see that negative forces (compression) are not allowed.
However, most structural systems possess bending stiffness. Such
systems are often subject to axial loads, and these may be compressive as
well as tensile, and in such cases may sometimes exceed the buckling load
leading to inherently nonlinear behavior.



Dynamics in the Vicinity of Equilibrium



The Linear Oscillator

Consider the continuous-time evolution of a dynamical system governed
by

ẋ = F(x, t) x ∈ Rn, t ∈ R, (2)

where x is a state vector which describes the evolution of the system
under the vector field, F. Given an initial condition, typically the values
of the state vector prescribed at t = 0, i.e., x(0), we can seek to solve
system (2) to obtain a trajectory x(t), or orbit, along which the solution
evolves with time. We will then seek to ascertain the stability of the
system, generally as a function of a (control) parameter, µ, and thus
consideration of

ẋ = F(x, µ, t) x ∈ Rn, t ∈ R, (3)

will play a central role in the material to be presented later.



Application of Newton’s second law relates acceleration and force (and
hence position), and, thus, often results in a second-order ordinary
differential equation of the form

d2x

dt2
= −ω2

nx , (4)

where ωn is a constant (the natural frequency), and with ẋ ≡ dx/dt, we
obtain the nondimensional governing equation of motion

ẍ + ω2
nx = 0, (5)

subject to the two initial conditions x(0), ẋ(0).



This is the equation of motion governing the dynamic response of the
spring-mass system shown below with ωn =

√
k/m (k and m constant)

and all other parameters set equal to zero, i.e. c = F (t) = z(t) = 0.

k(x,µ,t)

c

m

x(t)

F(t)

z(t)

A spring mass damper.

Since equation (5) is a linear, homogeneous, ordinary differential equation
with constant coefficients, we can write the solution as

x(t) = Aest . (6)



Placing equation (6) into equation (5) we find that s = ±iωn, and, thus,
the general form of the solution is given by

x(t) = Ae iωnt + Be−iωnt . (7)

Alternatively, using Euler’s identities we can write:

x(t) = C cos(ωnt) + D sin(ωnt). (8)

In order to determine A and B , (or C and D), we make use of the initial
conditions to get

x(t) = x(0) cos(ωnt) +
ẋ(0)

ωn
sin(ωnt). (9)



This system can be converted into a pair of coupled, first-order ordinary
differential equations (in state variable format) by introducing a new
variable

y = ẋ (10)

and substituting in equation (5) gives

ẋ = y , ẏ = −ω2
nx . (11)

In matrix notation
[

ẋ
ẏ

]
=

[
0 1

−ω2
n 0

] [
x
y

]
. (12)



A plot of equation (9) (with ωn = 1) is shown below in (a) for two
typical sets of initial conditions.
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Time series, (a) Two trajectories exhibiting simple harmonic motion.
x(0) = 1, ẋ(0) = 0 and x(0) = 0, ẋ(0) = 1, (b) Solutions to equation (17). (i)
x(0) = −1, ẋ(0) = 1 (solid line), (ii) x(0) = 0.0001, ẋ(0) = 0 (dotted line), and
(iii) x(0) = −0.99, ẋ(0) = 1 (dot-dashed line).



At this point we simply note that based on equation (9) and its derivative
(to obtain velocity) we can envision the trajectory evolving with time in a
repeating manner. Plotting position versus velocity (the phase plane) is a
useful way of displaying dynamic behavior, and in this (undamped) case
it is apparent that the motion is described by ellipses. This is, of course,
the periodic behavior we would expect for a simple spring-mass system
with ωn (assumed real, i.e., ω2

n > 0) identified as the natural frequency of
the oscillation. In terms of a heuristic concept of stability we might
consider this behavior to be neither stable or unstable, since any motion
we might initiate does not decay or grow, but simply persists.



The solution (8) can also be written as

x(t) = Ā cos(ωnt + φ), (13)

where Ā =
√
C 2 + D2 is the amplitude and φ = arctan (C/D) is the

phase. Thus we see that the larger the initial conditions, the larger the
area enclosed by the ellipses, i.e.,

x2(t) + (ẋ(t)/ω)2 = Ā2. (14)

The two trajectories shown earlier differ by a phase φ = π/2 and thus the
dashed line can be viewed as the corresponding velocity time series.
Later, we will see how this relates to energy. However, the form of the
resulting motion is independent of the initial conditions.



Suppose we have ω2
n < 0. This is a situation that is difficult to envision,

physically, but can occur, for example, in a nonlinear system if the spring
stiffness becomes negative. Then the motion is governed by

ẍ − ω2
nx = 0. (15)

Now adopting the solution x(t) = Aest leads to s = ±ωn, and thus

x(t) = aeωnt + be−ωnt . (16)

Using the definition of hyperbolic functions and the initial conditions, we
also have

x(t) = x(0) coshωnt + (ẋ(0)/ωn) sinhωnt. (17)



In this case we do not have a periodic solution: the positive exponent
indicates that typically x → ∞ as t → ∞. Hence, our heuristic concept
of stability indicates that this behavior is unstable. However, we also
observe that we can choose very specific initial conditions (unlikely but
nevertheless important cases), where the trajectory will end up at the
origin, i.e., where the positive exponential term is completely suppressed,
as well as the case where the negative exponential term in equation (16)
dominates for a short time before the trajectory is swept away. These
cases were also illustrated earlier.
For all practical purposes, i.e., arbitrary initial conditions, the motion is
clearly unstable. The meaning of the special trajectory will be discussed
at length later.



Damping

The preceding examples are somewhat unrealistic in terms of practical
mechanics since they do not include energy dissipation. With the
inevitable presence of damping the question of stability becomes less
ambiguous. Typical motion will then consist of a transient followed by
some kind of recurrent long-term behavior. This brings us to the
fundamentally important concept of an attractor. These are the special
solutions alluded to earlier, and they play a key role in organizing
dynamic behavior in phase space (the space of the state variables). We
shall also see that for nonlinear systems unstable solutions have an
important influence on the general nature of solutions.



Suppose we now allow for some energy dissipation in the form of linear
viscous damping, i.e., c '= 0 in the SMD. The equation of motion is now

ẍ + 2ζωnẋ + ω2
nx = 0, (18)

in which a nondimensional damping ratio, ζ ≡ c/(2mωn) has been
introduced. Solutions to this equation now depend on the value of ζ. For
underdamped systems we have ζ < 1 and solutions of the form

x(t) = e−ζωnt

(
ẋ(0) + ζωnx(0)

ωd
sinωd t + x(0) cosωd t

)
, (19)

where the damped natural frequency ωd is given by

ωd = ωn

√
1− ζ2. (20)



A typical underdamped response (ζ = 0.1) is shown on the next page as
a time series and phase portrait, respectively. The origin indicates a
position of asymptotically stable equilibrium,i.e., any disturbance leads to
a dynamic response that moves smoothly back to equilibrium. The
trajectory gradually spirals down to this rest state: we can imagine a
family of trajectories forming a flow as time evolves.
Since this equilibrium is unique, the whole of the phase space is the
attracting set for all initial conditions and disturbances. Damping in this
range, e.g., ζ 0.1 is quite typical for mechanical and structural systems.
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Time series (a) and phase portraits (b) for underdamped (oscillatory) motion,
x(0) = 1.0; ẋ(0) = 0.0; ζ = 0.1.. (c) and (d) overdamped (non-oscillatory)
motion, x(0) = 0.0; ẋ(0) = 1.0; ζ = 1.5.



For a heavily (or overdamped) system ζ > 1, and in this case the form of
the solution is

x(t) = Ae(−ζ+
√

ζ2−1)ωnt + Be(−ζ−
√

ζ2−1)ωnt (21)

where

A =
ẋ(0) + (ζ +

√
ζ2 − 1)ωnx(0)

2ωn

√
ζ2 − 1

(22)

and

B =
−ẋ(0)− (ζ −

√
ζ2 − 1)ωnx(0)

2ωn

√
ζ2 − 1

. (23)

The motion is a generally monotonically decreasing function of time and
may take a relatively long time to overcome rather heavy damping forces
on the way to equilibrium. A typical case was also shown earlier.



The boundary between these two cases is the critically damped case, i.e.,
ζ = 1. We will regularly encounter the situation in which the stiffness of
a system degrades, and given the definition of ζ we expect not only a
reduction in the natural frequency but also an increase in the damping
ratio.



Returning to the state variable matrix format of the linear oscillator we
therefore have

[
ẋ
ẏ

]
=

[
0 1

−ω2
n −2ζωn

] [
x
y

]
. (24)

We can also write the solution in terms of the eigenvalues of the state
matrix, i.e., the roots of the characteristic equation

λ2 + 2ζωnλ+ ω2
n = 0. (25)

Critical damping thus relates to the discriminant being equal to zero.



Given the scenario of a system losing stability we can usefully view all the
response possibilities of this type of linear system according to the
location of the roots in the complex plane. For example, having two
complex roots with negative real parts corresponds to an exponentially
decaying oscillation:

Phase portraits and root structure of a linear oscillator.



In general we will have a system with positive stiffness and damping and
thus a root structure corresponding to the upper right quadrant. Critical
damping corresponds to the parabola, and phase portraits and
eigenvalues are indicated for various combinations of the natural
frequency and damping. The system eigenvectors organize the transient
behavior in the phase portrait. Some useful terminology here includes the
spiral or focus for decaying oscillatory motion (also called a sink), the
node for overdamped motion, the inflected node for equal eigenvalues
(and thus including the critically damped case), and the saddle for the
motion characterized by having both a stable and unstable direction
(eigenvector) with instability becoming dominant. We can also view the
undamped case as a center.



This is more challenging in the context of higher-order dynamical
systems, but more formally we state that if we have a dynamical system
ẋ = Ax where A is constant with eigenvalues λi , i = 1, 2, ..., n, then

! (i) If the system is stable, then Re{λi} ≤ 0, i = 1, 2..., n.

! (ii) If either Re{λi} < 0, i = 1, 2..., n; or if Re{λi} ≤ 0, i = 1, 2..., n
and there is no repeated eigenvalue; then the system is uniformly
stable.

! (iii) The system is asymptotically stable if and only if
Re{λi} < 0, i = 1, 2..., n (and then it is also uniformly stable, by
(ii)).

! If Re{λi} > 0 for any i , the solution is unstable.



We thus observe what will typically happen when the stiffness of the
system degrades (e.g., due to an axial load acting on a slender structure).
For a small amount of damping the eigenvalues start off as a complex
conjugate pair with negative real parts. As the stiffness (and hence
natural frequency) reduces, the eigenvalues merge on the negative real
axis, and then their magnitudes diverge with one entering the positive
half-plane. Thus instability occurs, and solutions grow without bound.
Although the above description relates to a single-degree-of-freedom
(SDOF) linear oscillator this type of scenario is encountered to a large
extent within a variety of high order and nonlinear systems. The
geometric view afforded by a consideration of the root structure and
phase portraits of families of solutions about equilibrium points is very
useful. We will make extensive use of linearization to utilize this view
locally to equilibrium within a nonlinear context.



An Oscillator with a Slow Sweep of Frequency

Consider again the spring-mass system. Again assume that there is no
damping or external forcing (c = F (t) = z(t) = 0), and that the spring
stiffness decays linearly (in time) from a base value k = 1 at t = 0. We
assume this decay is very slow, and characterized by a small parameter ε.
In this case we can write the governing equation of motion as

ẍ + µ2(t)x = 0 (26)

in which

µ2(t) =
k

m
(1− εt), (27)

i.e., the system will lose stability when t → 1/ε. If we assume that the
evolution of the stiffness change is very slow (ε << 1), i.e., much slower
than the natural oscillatory response of the system, then we have a
number of approaches available for obtaining a solution x(t). A direct
numerical solution of equation (26) is easily obtained.



Alternatively, a perturbation approach can be applied, e.g., using the
multiple scales technique, we obtain (to the leading term in the
expansion)

x(t, ε) = x+(t+, ε) =

√
µ(0)

µ(t̃)

[
cos t+

]
, (28)

where the initial conditions are taken as unity, the plus sign indicates a
solution forward in time, and where

t+ =
1

ε

∫ t̃

0
µ(s̃)ds̃. (29)

Inserting the specific form for the linear sweep (equation 27), we get a
solution

x(t) = (1− εt)−1/4 cos

[
− 2

3ε
(1− εt)3/2 +

2

3ε

]
, (30)

where k/m = 1 has been used.



Consider the specific case of ε = 0.01. In this case we would expect the
system to lose stability near t = 100. Part (c) also illustrates that the
frequency and stability characteristics for this type of linear system are
not influenced by initial conditions (which are different in this final case).
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Dynamics and Stability

It is a simple matter to write down the potentialand kinetic energy for
the spring mass system

V =
1

2
kx2, T =

1

2
mẋ2. (31)

Applying Lagrange’s equation yields the equation of motion. In which we
can use ẍ = ẋd ẋ/dx , separate variables and confirm that energy is
conserved. In this simple case both the potential and kinetic energies
were positive and quadratic.
But we are especially interested in systems characterized by a potential
energy function that is not necessarily quadratic and whose form changes
with a (load) parameter.



We also note the relation between energy and the natural frequency

ω2
n =

d2V

dx2
/
d2T

dẋ2
≡ V11

T11
, (32)

in which the subscripts refer to differentiation with respect to generalized
position (for the potential energy) and generalized velocity (for the
kinetic energy). This will form the basis of a number of approximate
techniques, including Rayleigh’s method, to be described later.



Stability Concepts

We have seen how, for conservative, nongyroscopic forces, we can write
the potential energy as

V = V (Qi ), (33)

and Lagrange’s equation tells us that the condition for equilibrium (i.e., a
stationary state, or no motion) is given by

Vi ≡
∂V

∂qi
= 0 (34)

(for all i), which can be stated in words as

A stationary value of the total potential energy with respect
to the generalized coordinates is necessary and sufficient for the
equilibrium of the system.



Since we are primarily interested in systems that have a smooth potential
energy function, we can develop a Taylor series expansion about
equilibrium

V = V E +
i=n∑

i=1

∂V

∂Qi

∣∣∣∣∣

E

qi +
1

2

i=n∑

i=1

j=n∑

j=1

∂2V

∂Qi∂Qj

∣∣∣∣∣∣

E

qiqj + ......, (35)

where incremental coordinates qi ≡ Qi −QE
i have been introduced. Now,

if we make use of the tensor summation convention and define

∂2V

∂Qi∂Qj

∣∣∣∣
E

≡ V E
ij (36)

we obtain the dominant quadratic form

V =
1

2
V E
ij qiqj + ......, (37)

since V E ≡ V (QE
i ) is an arbitrary constant (which we generally choose

equal to zero), and the linear term automatically drops out by virtue of
equation (34).



So far, we still haven’t fully considered stability in terms of energy.
Although the notion of equilibrium enables considerable progress to be
made in linear structural anlysis, the presence of compressive axial loads
demands further scrutiny. A theorem, which goes back to Lagrange,
states

A complete relative minimum of the total potential energy
with respect to the generalized coordinates is necessary and
sufficient for the stability of an equilibrium state of the system.

We must therefore examine the local form of the potential energy in the
vicinity of equilibrium, i.e., we need to determine the conditions for which
equation (37) is a minimum, and for this we need Vij to be positive
definite.



For the types of axially-loaded structures of interest here we can write the
dominant (quadratic) form of the potential energy as

V =
1

2
V E
ij qiqj + ......, (38)

=
1

2

[
Uijqiqj − Pkεkijqiqj

]
, (39)

where Uij is the strain energy and Pk is a set of loads with corresponding
movement εkij . In matrix notation we can also write

V =
1

2
V E
ij qiqj =

1

2
qTKq, (40)

in which K is the effective stiffness matrix. For conservative systems this
matrix is symmetric.



Similarly, most systems of interest will have a quadratic kinetic energy of
the form

T =
1

2
T E
ij q̇i q̇j =

1

2
q̇TMq̇, (41)

in which M is the mass matrix. Placing the general expressions for the
energy in Lagrange’s equation then yields

T E
ij q̈i + V E

ij qi = 0, (42)

in terms of the generalized coordinates qi .



The coordinates can be transformed into principal coordinates ui such
that the equations of motion become decoupled:

T E
ii üi + V E

ii ui = 0. (43)

In this case, we can write down all the natural frequencies:

ω2
i =

V E
ii

T E
ii

. (44)

Of course, there are a number of important issues underlying these last
few expressions, but considerable research has focused on these types of
transformations.


