
Bifurcations

We have already seen how the loss of stiffness in a linear oscillator leads
to instability. In a practical situation the stiffness may not degrade in a
linear fashion, and instability may not lead to solutions that lose stability
completely. The behavior of the linear oscillator provides an informative
local view of behavior, but in a practical situation we might expect
nonlinear effects to limit the response in some way. Bifurcation theory
can be used to classify instability phenomena based on generic behavior.
In other words, as a control parameter is varied, e.g., the axial load on a
structure, what happens to a system as a critical condition is reached?



Clearly the passage of an eigenvalue through to the positive real half
plane leads to a qualitative change in the phase portrait, i.e., the
behavior of trajectories in the local vicinity of an equilibrium point. As a
parameter is (slowly) varied, the response of a system changes (often
gradually), but it is the qualitative change in the dynamics that is
classified as a bifurcation. Although an elementary classification of
bifurcations is based on a one-dimensional description, we will focus
attention on two-dimensions (which are fundamentally one-dimensional,
based on center manifold theory), since we are primarily interested in
oscillations which result from application of Newton’s second law to
structural (mechanical) systems.



The Saddle-Node Bifurcation

The saddle-node bifurcation is the fundamental instability mechanism of
a system under the action of a single control parameter:

ẋ = µ− x2. (45)

The control parameter µ and coordinate x are linked quadratically.
However, in order to maintain a meaningful relationship with vibration we
incorporate this relation into the context of a lightly damped oscillator

ẍ + 0.1ẋ + x2 − µ = 0. (46)

Equilibrium corresponds to the rest state and thus

xe = ±√
µ. (47)



The stability of these equilibria can be determined in a number of ways,
and we start by considering the oscillations resulting from a small
perturbation. Let x = xe + δ, where δ is a small deviation from
equilibrium. Placing this in equation (46), we get

δ̈ + 0.1δ̇ + x2e + 2xeδ + δ2 − µ = 0. (48)

By definition x2e − µ = 0, and neglecting δ2 (since δ is small) we obtain

δ̈ + 0.1δ̇ + 2xeδ = 0. (49)

This describes the dynamic response of small perturbations about
equilibrium. Substituting in the expression for equilibrium, equation (47),
results in

δ̈ + 0.1δ̇ ± 2
√
µδ = 0. (50)

Taking the positive sign we have a response which oscillates with a
frequency a little less than ω2

n = 2
√
µ. The damping causes the motion

to decay back to equilibrium.



Taking the negative sign we have negative stiffness and a solution that
grows with time (root structure). The potential energy associated with
the saddle-node can be written as

V =
x3

3
− µx , (51)

and equilibrium from

V1 ≡
dV

dx
= x2 − µ. (52)

We have already seen how the sign of the curvature of the potential
energy governs stability:

V11 = 2x , (53)

which can be evaluated about equilibrium. When xe =
√
µ, the second

derivative of the potential energy function is positive indicating that this
is a minimum and hence is stable.



A typical graphical representation of this situation is shown below in part
(a).
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(a) A saddle-node bifurcation, (b) A transcritical bifurcation.



Suppose we have a system with a relatively large positive µ. In this case
there is a stable and an unstable equilibrium, characterized by a local
minimum and a local maximum of the underlying potential energy
respectively. We can imagine the oscillations of a small ball rolling on
this potential energy surface (shown dotted in the previous slide). As the
value of µ is reduced the two equilibria come together (the frequency of
small oscillations will decrease and effective damping increases) as the
potential surface flattens out. Just prior to coalescence the stable
equilibrium can be thought of as a node, and the unstable equilibrium
remains a saddle. Hence their approach (at the critical point) is called a
saddle-node bifurcation. No equilibria exist for negative µ and trajectories
would simply be swept away. This instability is also sometimes referred to
as a fold or limit point.



Bifurcations from a Trivial Equilibrium

Although the saddle-node is the key stability transition in a system under
the action of a single control, there are many systems in mechanics in
which some kind of initial symmetry is present. An example is the
transcritical bifurcation. In the context of a second order ordinary
differential equation we can write

ẍ + 0.1ẋ + x2 − µx = 0. (54)

Following the same approach as for the saddle-node we obtain the
situation illustrated in part (b) of the previous figure. Here, there is a
fundamental (trivial) equilibrium for negative µ which loses stability as µ
passes the through the origin (from negative to positive). The other
equilibrium becomes stable at this point and deflection occurs in the
positive x direction.



The final pair of bifurcations are associated with the loss of stability of
the trivial solution and have global symmetry. They represent an
important class of instability in structural mechanics: super- and
sub-critical pitchfork bifurcations. For the super-critical pitchfork
bifurcation we can consider the oscillator

ẍ + 0.1ẋ + x3 − µx = 0. (55)

Again, we observe the xe = 0 solution, which is stable for µ < 0. At
µ = 0 a secondary equilibrium intersects the fundamental and it can be
shown that the two (symmetric) non-trivial solutions are stable. This
situation corresponds to the classic double-well potential which is also
shown superimposed for a specific (positive) value for µ.
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(a) A super-critical pitchfork bifurcation, (b) A sub-critical pitchfork
bifurcation.

The corresponding sub-critical pitchfork bifurcation:

ẍ + 0.1ẋ + x3 + µx = 0, (56)

is shown in part(b).



In this case, suppose we start from a negative value of µ. The trivial
equilibrium is again stable but now, when the critical point is reached, the
system becomes completely unstable. Furthermore, as the critical point is
approached, the potential energy maxima associated with the adjacent
saddles start to erode the size of allowable perturbations. This is an
important consequence of the nonlinearity in the system. Although these
last two bifurcations have the same stable trivial equilibrium and critical
point, they have quite different consequences if encountered in practice.
Hence, they are sometimes characterized as safe or unsafe according to
whether a local, or adjacent, post-critical stable equilibrium is available.



Initial Imperfections

It has already been mentioned that initial geometric imperfections or load
eccentricities may have a relatively profound effect on stability. We shall
consider this type of effect and its influence on the super-critical
pitchfork. Incorporating a small offset causes equation (55) to be altered
to

ẍ + 0.1ẋ + x3 − µx + ε = 0, (57)

where ε is a small parameter, which breaks the symmetry.



Part (a) shows how the instability transition is changed.
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(a) A perturbed super-critical pitchfork bifurcation, (b) Corresponding natural
frequency (for the primary branch).



Now, for large negative µ we have a primary equilibrium slightly offset
from x = 0, and this simply grows as µ approaches, and then passes
beyond, the critical value for the perfect geometry (the origin). There is
also a complementary solution for negative x , but this wouldn’t ordinarily
be accessed under a natural loading history, i.e., as µ is monotonically
increased. However, the complementary solution does possess a critical
point, and this is actually a saddle-node bifurcation (which would be
encountered if µ was initially large and x negative, and then µ were
reduced). We also note the small tilt in the potential energy function.
Furthermore, the complementary solution has an effect on very large
amplitude motion and strong disturbances, and this will be revisited later.



Initial imperfections have little effect on the saddle-node bifurcation, but
have an especially important influence on the sub-critical pitchfork
bifurcation which is termed imperfection sensitive, i.e., the magnitude of
the critical load is considerably reduced in the presence of imperfections.
For the trans-critical bifurcation the reduction of the maximum critical
load occurs for some imperfections but not all.



A Simple Demonstration Model

Consider the slender, flexible system shown below (attributed to Brooke
Benjamin).
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Schematic of an example bifurcation problem.

This simple system exhibits an unstable-symmetric (sub-critical pitchfork)
bifurcation which subsequently stabilizes for large deflections.



We shall conduct a qualitative analysis of this system by associating a
load parameter, µ, with the length of the cable (measured from the
critical value), and a displacement, q, associated with a general
out-of-plane deflection.
The flexible cable is somewhat unusual since it possesses a
moment-curvature relation that exhibits a softening spring effect, i.e., the
sub-critical bifurcation manifests itself as a sudden motion from in-plane
to a drooped out-of-plane position.



A qualitative form of the underlying potential function for this system
can be written as

V =
1

720
q6 − 1

24
q4 − 1

2
µq2. (58)

That is, a function reflecting the global symmetry of the system and
anticipated equilibria, which are given by the solutions of

V1 =
1

120
q5 − 1

6
q3 − µq = 0. (59)

Thus equilibrium curves are given by:

q = 0

µ = −1

6
q2 +

1

120
q4, (60)

and are shown on the next page in part (a).



-1

-0.5

0

0.5

-4 -2 0 2 4

µ

q

(a)

  

 A

B

-1

-0.5

0

0.5

-2 0 2 4 6 8 10

µ

ω 2

(b)

A

B

Equilibrium (a) and dynamics (b) of the wire for the initially perfect geometry.



The second derivative of potential energy is

V11 =
1

24
q4 − 1

2
q2 − µ = 0, (61)

and evaluating this expression along the equilibrium paths of equation
(60) we get

V f
11 = −µ

V p
11 =

1

24

[
10±

√
100 + 120λ

]2

−1

2

[
10±

√
100 + 120λ

]
− µ. (62)

The sign of these expressions thus indicate stability. Assuming a simple
quadratic form for the kinetic energy we can view equations (62) as
representing the natural frequencies. These are plotted as a function of
the control (the length of the cable) in part (b). We see a linear decay as
the critical value is reached, followed by a finite jump to a higher
frequency associated with the heavily drooped equilibrium.



An initial imperfection can again be incorporated into the analysis
starting from

V =
1

720
q6 − 1

24
q4 − 1

2
µq2 + εq. (63)

Plots of these relations are shown in the figure below for some
representative initial imperfections.

-1

-0.5

0

0.5

-6 -4 -2 0 2 4 6

µ

ε = 0.01

ε = 0.3

ε = 0.1

q

(c)

-1

-0.5

0

0.5

-2 0 2 4 6 8 10

0.3
0.1
0.01

µ

ω 2

Imperfection, ε

(d)

Equilibrium (a) and dynamics (b) of the wire for the initially imperfect
geometry.


