Probing the force field to identify potential energy

TitleProbing the force field to identify potential energy
Publication TypeJournal Article
Year of Publication2019
AuthorsY Xu, and LN Virgin
JournalJournal of Applied Mechanics
Volume86
Issue10
Date Published10/2019
Abstract

A small ball resting on a curve in a gravitational field offers a simple and compelling example of potential energy. The force required to move the ball, or to maintain it in a given position on a slope, is the negative of the vector gradient of the potential field: The steeper the curve, the greater the force required to push the ball up the hill (or keep it from rolling down). We thus observe the turning points (horizontal tangency) of the potential energy shape as positions of equilibrium (in which case the "restoring force"drops to zero). In this paper, we appeal directly to this type of system using both one- A nd twodimensional shapes: Curves and surfaces. The shapes are produced to a desired mathematical form generally using additive manufacturing, and we use a combination of load cells to measure the forces acting on a small steel ball-bearing subject to gravity. The measured forces, as a function of location, are then subject to integration to recover the potential energy function. The utility of this approach, in addition to pedagogical clarity, concerns extension and applications to more complex systems in which the potential energy would not be typically known a priori, for example, in nonlinear structural mechanics in which the potential energy changes under the influence of a control parameter, but there is the possibility of force probing the configuration space. A brief example of applying this approach to a simple elastic structure is presented

DOI10.1115/1.4044305
Short TitleJournal of Applied Mechanics