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A note on damping:

Incorporating a little viscous damping in our model gives
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Considering dynamics along the fundamental equilibrium path, i.e., about
qe = 0, we have

q̈ + �q̇ � µq = 0. (65)



Assuming the solution is of the form q = Ae

�t we obtain the
characteristic equation
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We recall the familiar expression for damped natural frequencies
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where ⇣ ⌘ �/2
p
�µ, i.e., because of the decaying sti↵ness we observe

that the response becomes critically damped just prior to buckling when
� = 2

p
�µ. For example, with � = 0.1 oscillations would cease when

µ = �0.0025.



Softening column:
This example can be solved more accurately using classical methods, e.g.,
as an elastic or using Rayleigh-Ritz: The nondimensional di↵erential
equation governing equilibrium is

y
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with boundary conditions y(0) = y

0(0) = y

00(h) = y

000(h) = 0.
For example, aapproximate expression for the critical height can be
obtained using the method of Rayleigh-Ritz and the potential energy
function
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to give solutions very close to the exact value of hcr = 1.986.



An elastica analysis (incorporating the softening material) can be
undertaken:
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Equilibrium paths and configurations.

Interest in this problem actually dates back to 1881 (Greenhill) and a
classic study into the height to which a tree might grow.
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The length of the cable can be made to evolve as a linear function of
time, and some numerical simulations are shown below, in which the rate
of change of the length has been set such that the critical condition is
reached after 300 time units. A small overshoot is encountered before the
cable rapidly moves to one of its remote equilibria. Also shown in this
figure is a reverse sweep when the length of the cable is gradually
shortened. A region of hysteresis is readily observed.
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Post-buckled equilibrium configurations and vibrations modes.



’Large’ Oscillations

So far, we have been mainly interested in the dynamic behavior in the
vicinity of equilibrium. The figure below shows a phase trajectory based
on a numerical simulation of the equation of motion when the length of
the cable is such that the cable is stable in both the upright position or
one of two highly drooped configurations. In this case the damping has
been removed and initial conditions set such that the motion traverses
across all the equilibrium positions.
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An undamped phase trajectory, µ = �0.5, q(0) = 4.8, q̇(0) = 0.

There are five equilibria at this length: stable at -4.04, 4.04, 0.0 and
unstable at -1.92, 1.92.



Experiments

This behavior can be shown quite easily in an experiment. Four sets of
hole separation were used: 10cm, 15cm, 20cm, and 25cm. For each case
the length of the cable was increased and the lateral deflection was
measured a short distance up from the base. The experimental system is
shown in three stages of deformation below. In a uniform gravitational
field the loop will reach a critical value, at which point it flops suddenly
to one side, characteristic of a sub-critical pitchfork bifurcation.

Front views of the loop. (a) short arc length, i.e.,µ << 0, prebuckled; (b)
longer arc length, i.e., µ < 0, prebuckled; (c) long length, i.e., µ > 0 (or

displaced from the trivial equilibrium if in region of hysteresis), postbuckled.



The figure below shows the measured (equilibrium) results. In each case
a sudden jump to a severely-drooped configuration is apparent, as well as
the hysteresis upon reduction of the cable length. In this case the cable
length is scaled by the hole separation. Frequencies were also measured
(using a laser velocity vibrometer) and these are also shown (part (b)).
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Behavior of loop made of a cable with a softening characteristic. (a)

equilibrium paths for four di↵erent loops; (b) lowest frequency in each mode,

before and after the jump (with an expanded y-axis).


