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A beam with a constant axial force

In this section we develop the governing equation of motion for a thin,
elastic, prismatic beam subject to a constant axial force:
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Beam schematic including an axial load.

It has mass per unit length m, constant flexural rigidity EI , and subject
to an axial load P . The length is L, the coordinate along the beam is x ,
and the lateral (transverse) deflection is w(x , t).



The governing equation is

EI
∂4w

∂x4
+ P

∂2w

∂x2
+m

∂2w

∂t2
= F (x , t). (1)

This linear partial differential equation can be solved using standard
methods.
We might expect the second-order ordinary differential equation in time
to have oscillatory solutions (given positive values of flexural rigidity
etc.), however, we anticipate the dependence of the form of the temporal
solution will depend on the magnitude of the axial load.



The Temporal Solution

In order to be a little more specific, (before going on to consider the
more general spatial response), let us suppose we have ends that are
pinned (simply supported), i.e., the deflection (w) and bending moment
(∂2w/∂2x) are zero at x = 0 and x = l . In the general case we would
assume an exponential form for the solution but with these relatively
convenient boundary conditions we can take:

w(x , t) =
∞
∑

n=1

Y (t) sin
nπx

l
. (2)



The temporal part of the solution can be obtained by assuming

Yn(t) = Ane
iωnt , (3)

and substituting into equation 1 leads to

∞
∑

n=1

[[

EI
n2π2

l2
− P

]

n2π2

l2
−mω2

n

]

An sin
nπx

l
e iωnt = 0. (4)

Clearly the term in the outer square brackets must vanish for a generally
valid solution so that

ω2
n =

n4EIπ4

ml4

[

1− Pl2

n2EIπ2

]

. (5)



If we define the following parameters:

Pcrn = n2EIπ2/l2 ω̄2
n = n4EIπ4/ml4, (6)

equation 5 becomes

ωn = ±ω̄n

√

1− P/Pcrn , (7)

and we see that the nature of the solution depends crucially on the
discriminant. Making use of the Euler identities we shall consider four
representative cases, where An and Bn are constants obtained from the
initial conditions.



◮ If P = 0 then
Yn(t) = An cos ω̄nt + Bn sin ω̄nt (8)

and we observe simple harmonic motion, a familiar result from linear
vibration theory.

◮ If P < Pcrn then

Yn(t) = An cosωnt + Bn sinωnt, (9)

where
ωn = ±ω̄n

√

1− P/Pcrn , (10)

and simple harmonic motion results. Any perturbation will induce
oscillatory motion about equilibrium. The response neither grows or
decays.



◮ If P = Pcrn then the solution can be written as

Yn(t) = An + Bnt, (11)

and the motion grows linearly with time (this is a special case with
multiple roots).

◮ If P > Pcrn then

Yn(t) = An coshωnt + Bn sinhωnt, (12)

and the motion grows exponentially with time.



Examples of these are shown (a) below in which the natural frequency in
the absence of axial load was taken as unity. Also shown in this figure are
the stability of equilibrium (b), and effective natural frequency (c), as a
function of axial load.
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(a) The lateral motion of the strut in terms of the first mode as a function of
the axial load. (b) stability of equilibrium, (c) Frequency-axial load relationship.



Let’s focus attention on the lowest natural frequency and its
corresponding mode (n = 1). With no axial load (P = 0) we obtain
ω1 = ω̄1. However, as the axial load increases the natural frequency
decreases according to equation 7, i.e., we observe a linear relationship
between the magnitude of the axial load and the square of the natural
frequency. Any non-zero initial conditions result in bounded motion, and
we may consider this to be a stable situation (at least in the sense of
Lyapunov).



When P = Pcr1 , ω1 vanishes and the solution becomes real (the linearly
increasing (constant velocity) solution, and any inevitable perturbation
will cause the system to become unstable. This type of instability is not
oscillatory but rather monotonic since, locally, the deflections grow in one
direction (determined by the initial conditions). This type of behavior is
sometimes referred to as divergence. The higher modes (n > 1) will
exhibit oscillations but the important practical information has been
gained.



The Spatial Solution

For tensile axial loads the system does not suffer instability, and we shall
see that the lowest natural frequency increases with tensile force (in
similarity to the string).
Returning to equation 1 and focusing on the free vibration problem with
an external but constant axial load (F (x , t) = 0)) we can write a general
solution to the spatial part of the solution by assuming
w(x , t) = W (x) cosωt and we then have

EI
d4W (x)

dx4
− P

d2W (x)

dx2
−mω2W (x) = 0. (13)



Introducing the non-dimensional beam coordinate ζ = x/l then we can
write a general solution to the above equation in the form

W (ζl) = c1 sinhMζ + c2 coshMζ + c3 sinNζ + c4 cosNζ, (14)

in which M and N are give by

M =
√

Λ +
√
Λ2 +Ω2

N =
√

−Λ +
√
Λ2 +Ω2

(15)

and using non-dimensionalized axial load and frequency:

Λ = Pl2/(2EI ) Ω2 = mω2l4/(EI ). (16)



We now apply the boundary conditions. We shall use clamped-pinned to
make things a little more interesting. At the left hand end we have the
fully clamped conditions

W (0) = 0 dW (0)
dx

= 0, (17)

and pinned, or simply supported, at the right hand end:

W (l) = 0 d2W (l)
dx2

= 0. (18)

In fact, we assume that this support is a roller, i.e., it does not allow
vertical displacement or resistance to bending moments. If the horizontal
displacement is suppressed then membrane effects may induce additional
axial loading - a feature to be explored in more detail later, and will prove
to be an important consideration in the dynamic response of
axially-loaded plates as well.



Plugging these boundary conditions into the general solution (equation
14) and applying the condition for non-trivial solutions (i.e., setting the
determinant equal to zero) leads to the characteristic equation

M coshM sinN − N sinhM cosN = 0. (19)

This equation can be solved numerically by assuming Λ and solving for Ω
or vice versa.



The figure below shows the lowest root of this equation as the solid line
(normalized with respect to the natural frequency in the absence of axial
load, i.e., Λ̄ = Λ/π2). Plotting the square of the natural frequency (part
b) gives almost, but not quite, a straight line. Only tensile loads
(normalized by the Euler load) are plotted in this figure.
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The relation between axial load and (a) frequency, (b) frequency squared for a
clamped-pinned beam.

Also plotted in these figures (as a dashed line) is an upper bound based
on the expression

Ω =
√

1 + γΛ, (20)

where γ = 0.978 for the clamped-pinned boundary conditions.



The corresponding mode shape comes from the smallest root of the
characteristic equation given by equation 14 with the coefficients

c1 = 1, c2 = − tanhM , c3 = −M/N , c4 = (M/N) tanN , (21)

and is plotted in figure below with the modeshape normalized such that
its maximum amplitude is unity.
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The mode shapes correponding to (a) the lowest natural frequency, and (b) the
elastic critical load, for a clamped-pinned axially-loaded beam.



Although not apparent in the figure there are actually three curves
plotted. Superimposed on the zero-load case (a continuous curve) is the
mode shape when the beam is subject to a compressive load of one half
the elastic critical load, which corresponds to U = −5.55 in the units
used. Note that this has an almost negligible effect on the mode shape
despite the frequency dropping from Ω0 = 15.42 for the unloaded case to
Ω = 10.42 (and indicated by a dotted line). Similarly a tensile force of
this same magnitude causes the lowest natural frequency to increase to
Ω = 19.09 but has only a minor influence on the mode shape (dashed
line). In general, despite the relatively strong effect of an axial load on
the natural frequencies of thin beams (and strings), the effect on mode
shapes is relatively minor. We shall see later that this is not necessarily
the case for plated structures. Equation 19 of course is a transcendental
equation and has an infinite number of roots. These correspond to higher
modes and will be considered later.



Before leaving this section we briefly touch upon some simple
experimental results.

A simple experimental set-up for a beam with clamped-pinned boundary
conditions in a displacement-controlled testing machine.



Suppose we have a thin strip of polycarbonate material 44 mm wide by
1.52 mm thick with a length of 318 mm (as shown on the previous page).
This material has a Young’s modulus estimated at 2.4 GPa, a density of
1.142× 103 Kg/m3 and boundary conditions such that it can be
considered simply-supported at one end and fully clamped at the other.
We would expect an elastic critical load in the vicinity of
Pcr = 20.2EI/L2 ≈ 6N (with the buckled mode shape is shown in part
(c)). We would expect a fundamental natural frequency in the vicinity of
f1 = 15.4/(2π)

√

EI/(ρAL4) ≈ 15Hz.



Using these two values to normalize the measured (tensile) axial loads
and the measured fundamental frequencies we obtain the data points
shown in the figure. Similar tests on struts of other lengths and
thicknesses can also be suitably nondimensionalized and the results
confirm the almost linear (stiffening) effect of the (tensile) loads on the
square of the natural frequencies. It should be mentioned here that in a
practical testing situation there is likely to be a little membrane effect due
to finite amplitude oscillations as well as possible friction at the pinned
end. This is especially the case when the axial loading is compressive.



Energy-based approximate analyses

In using conventional beam theory in a previous section, we made the
standard assumption that the bending moment and curvature were
linearly related (through the flexural rigidity EI ). This allowed a relatively
simple analytic solution to be found. However, a number of approximate
techniques have been developed which are relatively easy to apply, can be
used in somewhat more complicated situations including large deflections,
e.g., in the post-buckled regime.



If we do not restrict ourselves to small deflections and curvatures it can
be shown that the curvature ψ is related to the lateral deflection via

ψ = w
′′

(1 − w
′2)−1/2, (22)

where the prime denotes differentiation with respect to the arc length x .
It can be shown that this is roughly equivelent to the curvature
expression more familiar from standard geometry. It can also be shown
(based on inextensional beam theory) that the total strain energy stored
in bending is

U =
1

2
EI

∫ L

0

ψ2dx . (23)



Placing ψ in the above expression and expanding, we obtain

U =
1

2
EI

∫ L

0

(

w
′′2 + w

′′2w
′2 + .....

)

dx . (24)

Similarly, we can relate the end-shortening to the lateral deflection:

ξ = L−
∫ L

0

(1− w
′2)1/2dx , (25)

which in turn leads to the potential energy of the load:

VP = −1

2
P

∫ L

0

(

w
′2 +

1

4
w

′4 + .....

)

dx . (26)

Given a form for w these two expressions (24 and 26) can then be added
to the appropriate kinetic energy expression.



We assume a solution (buckling mode) of the form

w = Q(t) sin
πx

L
, (27)

which can then be used to evaluate the strain and end-shortening
energies to give

V (Q) = U + Vp = 1
2EI

(

π
L

)4 L
2Q

2 + 1
2EI

(

π
L

)6 L
8Q

4 + ......

−P
(

1
2

(

π
L

)2 L
2Q

2 + 1
2

(

π
L

)4 3L
32Q

4 + .....
)

,

(28)



and a kinetic energy expression

T =
1

2
m

∫ L

0

ẇ 2dx =
1

2
m

(

L

2

)

Q̇2. (29)

where terms including the first nonlinear potential energy contribution
have been retained. For example, if P is greater than the Euler critical
value then the potential energy takes the form of two minima separated
by a hill-top, i.e., a twin-well form of potential energy.



Non-trivial equilibrium paths (dV /dQ = 0) are now given by

Λ = 1 +
π2

8

(

Q

L

)2

(30)

and again application of the general theory (i.e., ω2 = V11/T11) leads to

(dΛ/dω)p
(dΛ/dω)f

= −2 (31)



A similar (but less accurate) analysis can be based on assumed
polynomial buckled and vibration mode shapes. For example, by
assuming a simple parabola as the fundamental mode shape we would
arrive at a natural frequency of 120 (as opposed to π4) and a critical load
of 12 (as opposed to π2). That these values are higher than the exact
values is typical for Rayleigh-Ritz analysis and is a consequence of the
system being effectively constrained to take the assumed mode which
therefore artificially stiffens the structure leading to higher values.



A useful means of estimating the fundamental frequency of vibration can
be based on the fact that the frequency corresponds to a stationary value
in the neighborhood of a natural mode. Using an assumed mode it can
be shown that for an inexact eigenvector we get an eigenvalue that differs
from the true value to the second order.
So far we have focused on directly applied axial loads, but there are a
number of other ways in which induced axial loads occur. If the ends of
the member are constrained in the axial direction then membrane effects
can occur for deflections which are not especially large.



The period of motion for a given set of initial conditions can be obtained
as a first integration. The energy contributions are

T =
1

2
m

∫ L

0

(ẇ)2dx (32)

U =
1

2
EI

∫ L

0

(w ′′)2dx (33)

W =
1

2
P

∫ L

0

1

2
(w ′)2dx , (34)

in which it can be shown that the induced axial load is given by

P = EI
2Lr2

∫ L

0 (w
′)2dx , (35)

where for a beam of cross sectional area A, and radius of gyration r we
have I = Ar2.



Suppose the ends are simply-supported (but not allowed to move
in-plane), then the lowest mode for the linear problem is simply a half
sine wave w = Q(t) sin (πx/L). We are primarily interested in the
maximum amplitude of motion Qm, then evaluating the energy terms and
adding them we obtain the total energy constant

C =
π4EI

mL4
Q2

m +
π4EI

8mL4r2
Q4

m, (36)

which then can be used to obtain the phase trajectory as a function of the
initial conditions (i.e., maximum amplitude). This can be subjected to
separation of variables and integrated (numerically) to obtain the natural
period (and hence frequency) as a function of maximum amplitude.



The frequency is normalized with respect to the (constant) linear natural
frequency (ωL). The result is shown below together with a Galerkin
approach (the dashed line) which yields

[

ω

ωL

]2

= 1 +
3

16r2

(

Qm

r

)2

. (37)
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The increase in natural frequency with amplitude for a simply-supported strut
which is constrained from moving axially at the ends (Wagner).

A similar approach can be used for clamped boundary conditions (which
are a little more likely to include in-plane end restraint).



In cases in which appreciable axial loading is present and especially in
buckling it is well established that small geometric imperfections may
have a profound effect on behavior. In terms of the linear theory, consider
a simply-supported strut with an initial deflection (i.e., prior to the
application of any load) of the form w0 = Q0 sin (πx/L. In this case the
static response is given by

wtotal = w0 + w =

(

Q0

1− α

)

sin (πx/L), (38)

where α = P/PE and PE is the Euler load, and thus, the maximum
lateral deflection (at the strut mid-point) is given by

Qmax =
Q0

1− α
=

Q0

1− P
PE

, (39)

i.e., deflections grow unlimited when the elastic critical load for the
underlying geometrically perfect strut is approached.



In terms of the large deflection theory the local form of the potential
energy in the vicinity of a bifurcation is perturbed to:

V =
1

24
V c
1111Q

4 +
1

2
V

′c
11Q

2λ+ V̇ c
1 ǫQ, (40)

where ǫ is a small parameter (which breaks the symmetry). In the case of
a slender strut this small parameter might relate to an initial curvature,
axial load offset or small lateral load: they can be shown to have quite
similar effects on subsequent behavior.



For the continuous strut (with a small initial deflected amplitude of Q0 -
representing a half sine wave) the equilibrium paths are given by

Λ = 1 +
π2

8

(

Q

L

)2

−
(

Q0

L

)(

L

Q

)

, (41)

and the frequency expression is given by

Ω2 = 2(Λ− 1) + 3

(

Q0

L

)(

L

Q

)

, (42)

We see that these degenerate into the perfect case for Q0 = 0.
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(a) Equilibrium paths for a slightly curved axially loaded strut, (b)
corresponding frequency-load relation.

We see that since there is no distinct instability the natural frequency
simply reaches a minimum in the vicinity of the critical load for the
underlying perfect system (a super-critical pitchfork bifurcation). The
different dashes in this figure represent levels of initial imperfection
incremented by 0.01 from 0 to 0.05.



In this section we conduct an alternative analysis of a simply supported
strut. Here, we apply Hamilton’s principle followed by a single mode
Galerkin procedure. Again axial load is included in the analysis and
moderately large deflections (corresponding to a degree of stretching) are
allowed, i.e., we focus attention again on a system in which no
displacement or rotation is allowed at the supports.



We state Hamilton’s principle in the form

∫ t2

t1

(δT − δU + δW )dt = 0 (43)

The strain energy consists of bending and stretching terms:

δU =

∫ L

0

[

Nxδ

(

∂u

∂x

)

+ Nx

∂w

∂x
δ

(

∂w

∂x

)

+ EI

(

∂2w

∂x2

)

δ

(

∂2w

∂x2

)]

dx .

(44)
The kinetic energy is given by

δT =

∫ L

0

m
∂w

∂t
δ

(

∂w

∂t

)

dx . (45)

and the work done by the external load

δW =

∫ L

0

[

Pδ

(

∂u

∂x

)

+ P
∂w

∂x
δ

(

∂w

∂x

)]

dx . (46)



Integrating by parts, applying the boundary conditions (pinned supports
at either end) leads to the equation of motion (in the lateral direction) of

mẅ + EI
∂4w

∂x4
− ∂

∂x

[

(Nx − P)
∂w

∂x

]

= 0 (47)

where the second term consists of axial effects from both the external
applied load, P , and large deflections, i.e., coupling between bending and
stretching, Nx , where Nx is based on a truncation of the end shortening
and given by

Nx =
EA

2L

∫ L

0

(

∂w

∂x

)2

dx , (48)

in which A is the cross-sectional area of the member.



The deflection w and distance along the beam x can be scaled in the
usual way using

W = w/h ξ = x/L (49)

which enables equation 47 to be rewritten as

∂4W

∂ξ4
− 12h

EL2

(

L

h

)4
∂

∂ξ

[

(Nx − P)
∂W

∂ξ

]

+
12mh

E

(

L

h

)4
∂2W

∂t2
= 0. (50)

We now scale the in-plane loads and time using,

p = P

(

L2

EI

)

(51)

Nξ = Nx

(

L2

EIA

)

(52)

τ = t

√

EI

mL4
(53)



leading to the final nondimensional equation of motion

∂2W

∂τ2
+
∂4W

∂ξ4
− ∂

∂ξ

[

(Nξ − p)
∂W

∂ξ

]

= 0. (54)

with the stretching-bending coupling from

Nξ = 6

∫ 1

0

(

∂W

∂ξ

)2

dξ. (55)



We can conduct a single mode analysis of this system by assuming

W (ξ, τ) = A(τ) sinπξ (56)

and placing this in equations 54 and 55 we get

Ä sinπξ + Aπ4 sinπξ − (p + 3A2)(−Aπ2 sinπξ) = 0 (57)

and thus
Ä+ A(π4 − pπ2) + 3π2A3 = 0. (58)



This is a cubic (hardening) spring oscillator. Hence we expect to see the
stiffening effect due to the immovable ends, even when the deflection is
not especially large. In the absence of axial load, and for small amplitude
motion (such that the cubic term is negligible), we simply have a
harmonic oscillation with a frequency of

Ω2
n = π4 (59)

which in dimensional terms is the familiar first mode (bending) frequency

ωn = π2

√

EI

mL4
(60)



Again we can examine the condition ω2
n → 0 to obtain the critical value

of the axial load
p = π2 (61)

which is, of course, the Euler load

P = EI
(π

L

)2

. (62)

This is the load at which the beam would buckle (assuming no initial
imperfections) if slowly increased from zero. Again the linear relation
between the axial load and square of the natural frequency is confirmed.
The fundamental mode of vibration however, although dominating the
motion, would also be accompanied by higher modes (for arbitrary initial
conditions), a subject we turn to next.



Although it is the lowest critical load (and its corresponding mode shape)
that dominates a typical buckling problem, the higher modes in vibration
play a more significant role.
Returning to an earlier example considered (clamped-pinned) we can
extract other roots from the characteristic equation (equation 19). The
table below shows how the natural frequencies corresponding to higher
modes also diminish with axial load:

P = 0 P = 0.5Pcr P = −0.5Pcr

Ω1 15.42 10.42 19.09
Ω2 49.94 44.95 54.52
Ω3 104.25 99.11 109.14



The figure below shows the corresponding mode shapes. Thus we see
that despite a relatively strong influence of axial load on natural
frequencies, the effect on mode shape is minor (this will not necessarily
to the case for more complicated structures like plates and shells).
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The second and third modes for a clamped-pinned strut. The inset shows the
curves in the presence of tensile and compressive axial forces



For the approximate analysis we return to the simply-supported case and
add a second term to the assumed shape:

W (ξ, τ) = A1(τ) sin πξ + A2(τ) sin 2πξ (63)

Using equation 63 to evaluate equations 54 and 55 now leads to the pair
of equations

Ä1 + 3π2A1(A
2
1 + A2

2) + A1(π
4 − pπ2) = 0 (64)

Ä2 + 12π2A2(A
2
1 + A2

2) + A2(16π
4 − 4pπ2) = 0, (65)

If we further assume that deflections are small, then we get the second
lowest critical load (p = 4π2) and a second lowest mode of vibration
(Ω = 4π4), both of which correspond to a full sine wave. That the
linearized equations are uncoupled is a consequence of the assumed
modes actually corresponding to the normal modes. For a general
structure this will not typically be the case.



Consider a cantilever strut shown below.
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Schematic of a cantilevered strut.

In choosing the assumed buckling and vibration modes we wish to have a
function that resembles the true modes as closely as possible. Even for a
relatively simple structure (like the cantilever under consideration) these
modes can be quite complicated. However, it is natural to assume a
function which at least satisfies the geometric boundary conditions.



The cubic polynomial

w(x , t) = C (t)x2 + D(t)x3, (66)

satisfies the conditions of zero displacement and slope when x = 0. We
use this to evaluate the strain energy in bending

U =
1

2

∫ L

0

w ′′2dx = 2EIL(C 2 + 3CDL+ 3D2L2), (67)

the potential energy of the end load

VP = −P
1

2

∫ L

0

w ′2dx = −PL3

30
(20C 2 + 45CDL+ 27D2L2), (68)

and the kinetic energy

T =
1

2
m

∫ L

0

ẇ 2dx =
m

210
(21Ċ 2L5 + 35Ċ ḊL6 + 15Ḋ2L7). (69)



Again, in the vicinity of equilibrium and for linear vibrations we expect
the total potential and kinetic energies to be quadratic functions of the
generalized coordinates and velocities respectively, and thus

T =
1

2
Tij q̇i q̇j (70)

U + VP =
1

2
V E
ij qiqj , (71)

where use is made of the dummy suffix notation, i.e., any suffix occurring
more than once in a product must be summed over all values.



Evaluating the partial derivatives leads to the second variation of the
strain energy:

Uij = EIL

[

4 6L
6L 12L2

]

, (72)

the work done by the axial load

VPij
= −PL3

[

(4/3) (3/2)L
(3/2)L (9/5)L2

]

, (73)

and the kinetic energy

Tij = mL5
[

(1/5) (1/6)L
(1/6)L (1/7)L2

]

. (74)



We note that these matrices would have been of infinite dimension and
diagonal if the exact mode shapes had been used. We next make use of
the following definitions

Ω2 =
mL4

EI
ω2, p =

PL2

EI
, (75)

and using the characteristic determinantal equation

∣

∣Uij − VPij
− ω2Tij

∣

∣ = 0 (76)

we obtain the characteristic equation

12− 5.2p − 0.97Ω2 + 0.05pΩ2 + 0.15p2 + 0.000794Ω4 = 0, (77)

from which we can readily extract the roots.



In the absence of an axial load (p = 0), we have a lowest root of
Ω2 = 12.6. This compares with an exact value of 12.36. By setting the
natural frequency to zero we obtain a lowest root of p = 2.49, which
compares with the exact value of π2/4. The other roots correspond to
the higher of the two modes, although these are less accurate. It is
interesting to note that using a single generalized coordinate (e.g., with
D = 0) leads to a critical load of p = 3 and a natural frequency of
Ω2 = 20.
There are a number of ways in which the accuracy of approximate
methods can be improved.



Rotating Beams

An example of slender beams subject to tensile axial loads can be found
in rotor blades. Centrifugal forces due to high rates of rotation typically
lead to stiffening effects. Consider the rotating (cantilever) beam shown
below.

L

Ω

X

W(X,t)

A rotating cantilever beam.



We can write the governing equation of motion in the usual form

∂2

∂x2

(

EI
∂2w

∂x2

)

− ∂

∂x

(

P
∂w

∂x

)

+m
∂2w

∂t2
= 0, (78)

but now the axial load P (in tension) is given by

P =

∫ L

x

mΩ2xdx . (79)

We see that this is similar to equation (13). Separating variables using
w = W (x)Y (t), setting the constant equal to λ2Ω2, we can write
equation (78) (for a uniform beam) in terms of two separated variables



EI
d4W

dx4
− d

dx

(

P
dW

dx

)

−mλ2Ω2W = 0, (80)

and
d2Y

dt2
+ λ2Ω2Y = 0, (81)

and scaling using w̄ = W /L, x̄ = x/L, and ψ = Ωt, we can then write

EI
d4w̄

dx̄4
− L2

d

dx̄

(

P
dw̄

dx̄

)

−mλ2Ω2L4w̄ = 0, (82)

and
d2Y

dψ2
+ λ2Y = 0. (83)



Boundary conditions appropriate for a cantilever beam are zero deflection
and slope at the hub (clamped) end and zero bending moment and shear
force at the free end. Equation (82) can be attacked in a variety of ways,
but it is recognized that since the axial force is not a constant (equation
79) in this case recourse to approximate solution techniques is required.
We have already seen the general influence of tensile axial loads on the
natural frequencies of lateral vibrations. In applications to rotor blades
(e.g., in helicopters and turbines) it is interesting to note that a common
configuration is to use a hinge at the root of the beam, and hence the
somewhat unusual boundary conditions of pinned-free are encountered.
In this case the lowest mode is a rigid body rotation (a flapping motion).
The cantilever is often termed a hingeless blade.



Here, we briefly mention a useful approach (related to Rayleigh-Ritz) due
to Southwell. He showed that a relation between the rotating and
non-rotating frequencies could be established as

ω2
i = ω2

nr + αiΩ
2, (84)

where ωnr is the natural frequency of the non-rotating blade and the
Southwell coefficient αi is given by

αi =

∫ 1

0 mx̄ [
∫ x̄

0 (dw̄i/dx̄)
2dx̄ ]dx̄

∫ 1

0
mw̄ 2

i dx̄
, (85)

and where w̄i = w̄i(x) is an assumed mode shape, satisfying the
boundary conditions. Although αi is not strictly constant, the mode
shape changes very little with rotation speed.



For Ω → 0 we get the lowest bending mode, which for a pinned-free
cantilever is 15.418

√

EI/(mL4), and for a clamped-free cantilever is

3.516
√

EI/(mL4). As the rate of rotation gets large we observe an
asymptotic relation ωi →

√
αiΩ.

For example
γ = c1γ1 + c2γ2, (86)

in which
γ1(x) = x , γ2(x) = 10x3/3− 10x4/3 + x5. (87)



It is shown that the two roots resulting from this analysis correspond to
the frequencies ω = Ω (flapping motion) and ω = 2.757Ω, and the
(normalized) mode shapes plotted:
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(a) A ’spoke’ diagram showing the relation between natural frequencies and
rate of rotation, (b) The first two mode shapes of a pinned-free rotating beam
using an assumed solution (Bramwell).

Given this basic shape, use can be made of Southwell’s method (equation
85), to show how the frequencies change with the speed of rotation
according to part (a).



Here, we show the table below which summarizes the effect of rotation
rate on the lowest three frequencies of clamped-free and pinned-free
uniform cantilevers in which η = Ω/

√

EI/mL4:

η Clamped-free Pinned-free

0 ω1 3.5160 0.000
ω2 22.0345 15.4182
ω3 61.6972 49.9649

1 ω1 3.6816 1.000
ω2 22.1810 15.6242
ω3 61.8418 50.1437

3 ω1 4.7973 3.000
ω2 23.3203 17.1807
ω3 62.9850 51.5498



A considerable amount of research has been conducted on modal
interaction in rotor blades due to elastic and inertial coupling. Clearly,
the effects of fluid loading (including forward flight) is complicated, but
suffice it to say here that there are practical situations in which there is
elastic coupling between flapping and lagging motion. Southwell’s
method can be applied and flap-lag dynamic interaction obtained. This is
an important design consideration for helicopters and stability boundaries
have been developed to take into account the various parameters of the
problem. Given the periodic nature of rotating systems certain special
mathematical techniques can be employed including Floquet theory.



Turbomachinery tends to operate at extremely high rates of revolution
and their blades can experience considerable stiffening effects. For
example, tip speeds can be close to Mach 1, i.e., a small turbine with a
radius of a few centimeters might operate at 100,000 rpm, whereas a
large commercial jet engine might operate in the vicinity of 1,500 rpm.
Use is made of Campbell diagrams (also known as waterfall plots and
spectrograms) to keep the natural frequencies away from the harmonics
of the rotor speed. Circular plates are sometimes designed so that their
natural frequencies can be tuned as a function of the rate of spinning.



Self-weight

Consider the column shown below

X

w

H
G

EI

(a) (b)

Geometry of column subjected to self-weight.

It has height H , constant bending stiffness EI , and constant weight W
per unit length. We would expect this column to buckle under its own
weight at a critical height, followed by a gradual droop corresponding to
a stable-symmetric (or super-critical) bifurcation. Again, we would also
expect the lowest natural frequency to reduce with axial load (column
height).



The equilibrium equation is

EIY ′′′′(X ) +W [(H − X )Y ′(X )]
′

= 0. (88)

To put the analysis in nondimensional terms, define

a =

(

EI

W

)1/3

, x =
X

a
, y =

Y

a
, h =

H

a
. (89)

(The lengths are not nondimensionalized by H, since the height is the
parameter of interest.) This leads to the following equation:

y ′′′′(x) + [(h − x)y ′(x)]
′

= 0. (90)

The boundary conditions are y(0) = y ′(0) = y ′′(h) = y ′′′(h) = 0. The
critical nondimensional height is hcr = 1.986.



Approximate values of the critical height can be obtained with the use of
the Rayleigh-Ritz method as described earlier. The potential energy U is
given by

U =
1

2

∫ h

0

(y ′′)2dx − 1

2

∫ h

0

(h − x)(y ′)2dx . (91)

Making U stationary for the kinematically-admissible function

y(x) = Qxc (92)

where c > 1 leads to the approximate critical height hcr = 2.289 if c = 2,
and the value hcr = 2.143 for the minimizing choice c = 1.747. If

y(x) = Q[1− cos(cx/h)], (93)

one obtains hcr = 2.025 for c = π/2 (corresponding to the buckling
mode for a cantilever with axial end load), and hcr = 2.003 for the
optimal value c = 1.829. Finally, the two-term approximation

y(x) = Q1x
2 + Q2x

3 (94)

furnishes the excellent approximation hcr = 1.991.



For a circular cross section of radius R we can also use a Rayleigh-Ritz
analysis (based on a simple polynomial displacement function) to obtain
critical height for uniform pole:

hc = 1.26

(

E

ρ
R2

)1/3

, (95)

in which ρ is the specific weight. For a uniform taper (r = (h − x)R0/h)
in which R0 is the radius at the base of the cantilever the coefficient in
equation 95 changes to 2.17. It is interesting to note that a rule of taper
appropriate for trees (r = ((h − x)/h)3/2R0) the coefficient becomes 2.60
so we see a somewhat optimal design in nature (at least in terms of
vertical loading).



A Hanging Beam

A related problem to self-weight buckling is the behavior of long vertical
pipes which are subject to axial loads which are not uniform and might,
for example, be due to the combined effects of gravity and hydrostatic
pressure. A practical example would be the behavior of drill strings in a
well bore. Again various end conditions are possible but we shall focus
attention on the specific case of a vertical beam, fully fixed at its top end
and completely free at the bottom. Hydrostatic pressure is assumed to
vary linearly with distance from the top, i.e., a submerged column, and
the effect of gravity is included in the following analysis. At the end of
this section we will show that for very long and slender beams the
behavior tends towards that of the hanging chain encountered earlier.



The governing equation of motion is based on the usual assumptions of
linearly elastic material and small deflections, and hence we still have
equation (1) with an additional term:

EI
∂4w

∂x4
− ∂

∂x

[

(w − wm)x
∂w

∂x

]

+m
∂2w

∂t2
= 0. (96)

Again we assume harmonic motion of the form w = W (x) sinωt and thus

d4W

dζ4
− αζ

d2W

dζ2
− α

dW

dζ
− λ4W = 0, (97)

in which

λ4 = mω2L4/(EI ), α = (w − wm)L
3/(EI ), ζ = x/L. (98)

In the above expressions m is the mass per unit length, L is the length of
the pipe, x is the distance from the lower end, W is the weight per unit
length, wm is the weight of the fluid displaced by the pipe, and ω is the
natural frequency of the motion. In the following analysis the parameter
α (in which the component (w − wm) can be thought of as the traction)
will be set, and a solution given for λ.



For the specific case under consideration the boundary conditions consist
of fixed at the top end: W (1) = dW /dζ(1) = 0, and free at the lower
end: d2W /dζ2(0) = d3W /dζ3(0) = 0. The figure below shows the
three lowest frequencies as a function of α.
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It can be shown that the lowest natural frequency (mode 1) drops to zero
when the traction reaches a level of α = −7.8373, i.e., buckling occurs.
In the case of a hanging beam with no hydrostatic pressure but under the
action of gravity alone we can effectively reduce the bending stiffness of
the system by allowing α to go to very large values, i.e., very large
tensions. This tends towards the behavior of a hanging chain, e.g., with
α = 1000 we get a lowest natural frequency coefficient tends to 1.22.
This compares with the changing chain value of 1.2026 which would have
been even more closely matched if the upper support were pinned rather
than fixed.



Experiments

A cantilever under the action of self-weight loading provides a relatively
simple context for experimental verification of some of the behavior
described in this section. Consider first a vertically-mounted (built-in end
at the bottom), slender elastic rod, of axisymmetric (circular)
cross-section, whose length can be increased such that (self-weight)
buckling is induced. A cantilever test was conducted whilst the beam was
mounted in a horizontal configuration to determine the flexural rigidity,
and this estimate suggested a critical elastic buckling length in the
vicinity of 20 cm, based on 1.986(EI/W )1/3. The lateral deflection was
measured as a function of height and the results plotted in part (a) of the
next slide. The supercritical nature of the bifurcation is apparent. In part
(b) of this figure the lowest natural frequency is also plotted as a
function of height. The minimum is achieved in the vicinity of the critical
height: it does not drop to zero in practice because of the inevitable
presence of a geometric imperfection (in fact for this type of
axisymmetric cross section there is no obvious preferred direction for
postbuckled deflection in the perfect case).
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(a) Tip deflection and (b) fundamental frequency for a slender rod.

Also, frequencies become increasingly difficult to measure (for small
amplitude vibration) near the buckling length due to the increasing effect
of damping. It can also be argued that the damping force has less affect
because the velocities are decreasing. The postbuckled equilibria and
frequencies (which start to increase in the postbuckling range) can be
studied in the context of an elastica analysis.



Another method of illustrating the effect of gravity is to conduct tests on
a double cantilever, i.e., a thin rod clamped at its center point and
oriented in the vertical direction. As the rod becomes more slender, the
difference between the upright and downward natural frequencies
becomes more apparent. A number of thin polycarbonate strips were
fabricated such that a range of the nondimensional parameter α (see
equation 98) could be examined. The hub was clamped to an
electro-magnetic shaker and the system subject to a broadband, random
excitation. A laser vibrometer was then used to acquire velocity data
from discrete locations along both beams, and subsequent signal
processing used to obtain frequency response data.



Consider a horizontal polycarbonate strip with cross-sectional dimensions
of 25.4× 4.67 mm, Young’s modulus E = 1.93 GPa, mass per unit
length m = 0.131 kg/m, and length L = 0.737 m.
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A thin prismatic cantilever, (a) experimental configuration, (b) frequency
response.

Part (b) showing the superimposed frequency response extracted from 30
evenly spaced locations along the entire length. The four lowest
measured natural frequencies (in Hz) are 1.812, 11.34, 31.71 and 62.35,
which compare with analytical values (based on equation 96) of 1.836,
11.51, 32.22 and 63.13.



Now, if we take the same system and rotate it 90 degrees we get the
frequency separation (mode splitting) shown below:
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Normalized frequency response spectrum for a cantilever in a gravitational field,
|α| = 1.23 (a) lowest few frequencies, (b) blow-up of the lowest frequency.

Upon closer inspection each peak is revealed as two adjacent peaks. For
larger values of α the up or down orientation has a greater effect. For
example, when we reduce the thickness of the strip to 2.38 mm, and the
length to 0.66 m, while holding everything else constant, we then have
|α| = 5.71, and the two peaks separate to approximately 1.65Hz and
1.95Hz.



For the upright cantilever we have the result that buckling occurs when
α = −7.837, and the trivial equilibrium loses its stability. Thus, the
results just shown (for which |α| = 1.23) correspond to a cantilever
whose length is (1.23/7.837)1/3 = 55% of its buckling length.
We show the results graphically below for both analytical and
experimental frequencies versus α. The lowest frequency, as expected,
drops to zero when |α| = −7.837.
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Thermal Loading

We briefly consider the situation in which the axially load is produced
through a thermal gradient. We start by looking at a simply-supported
beam which is not allowed to move axially at its ends (and thus
generating axial forces). If the beam, with coefficient of linear thermal
expansion α is subject to a constant thermal load, the governing
equation of motion becomes

mẅ + EIw IV + AE (αT )w II = 0, (99)

and thus we obtain a natural frequency which is a function of the
temperature change:

ω2 =
(π

L

)4
(

EI

m

)

[

1− (αT )

(

L

ρπ

)2
]

(100)

where ρ =
√

I/A is the radius of gyration.



In the absence of a temperature gradient we recover the natural
frequency of a regular simply-supported beam. Again we have a natural
frequency that drops to zero as the critical buckling temperature is
approached, but increases if the beam is cooled:

Tcr =
(ρπ

L

)2 1

α
(101)

Of course, this solution depends on the ends of the beam being prevented
from moving, but we basically obtain Euler buckling. The issue of
thermal loading is a very complicated one especially for non-simple
structures and non-uniform heating.



Beam on an Elastic Foundation

P K, EI, m

L

A schematic of a thin elastic beam restrained by a linearly elastic foundation.

It is not uncommon for a beam to have some kind of continuous support
along its length. We can think of this as an elastic foundation, and
assume the foundation stiffness is linear. A practical example of this
might be the sleepers under a railroad track, where a significant axial
loading effect is caused by thermal expansion. Referring to the schematic
shown in the above figure, and again assuming the ends of the beam are
pinned, we can extend the analysis from earlier.



The incorporation of a linear elastic foundation results in additional strain
energy stored in the foundation

UK =
1

2
K

∫ L

0

w 2dx (102)

=
1

2
K

∫ L

0

q2i sin
2 iπx

L
dx (103)

=
1

2
Kq2i

L

2
. (104)

Therefore, we obtain the natural frequencies

ω2
i =

1

m

[

EI

(

iπ

L

)4

+ K − P

(

iπ

L

)2
]

. (105)

Clearly we recover the results from earlier when we set K = 0, but
depending on the stiffness of the elastic foundation we see the possibility
of a frequency other than the first (corresponding to a half sine wave)
dropping to zero first under the action of increasing P .



Introducing the following nondimensional parameters

Ω2 =
ω2

EI
m

(

π
L

)4 , p =
P

EI
(

π
L

)2 , k =
K

EI
(

π
L

)4 , (106)

we obtain nondimensional equations for each mode

1 + k − p = Ω2 : i = 1,

16 + k − 4p = Ω2 : i = 2,

81 + k − 9p = Ω2 : i = 3, (107)

and so on. Without the elastic foundation we observe the familiar
relation between the axial load and the square of the natural frequency.
However, the elastic foundation has an interesting effect on the critical
loads, e.g., we see that when k = 4 the lowest two buckling loads are the
same (p = 5). For 4 < k < 36, the critical value of p is 4 + (k/4) and
the corresponding mode has two half-sine waves. In general, if
(n − 1)2n2 < k < n2(n + 1)2, the critical value of p is n2 + k/(n)2 and
the governing buckling mode has n half-sine modes.



Suppose we fix k = 12. The relationships in equations (107) are plotted
below:

0

2

4

6

8

10

12

14

0 20 40 60 80 100

i = 1
i = 2
i = 3

p

Ω2

k = 12

The interaction of axial load and natural frequencies for a pinned beam resting
on a foundation with stiffness k = 12.

For this specific foundation stiffness we have (in the absence of axial
loads) frequencies Ω2

1 = 13,Ω2
2 = 28,Ω2

3 = 93. The lowest three buckling
loads (i.e., when the lowest natural frequency is zero) are
p2 = 7, p3 = 10.33, p1 = 13. We see how these modes have changed
order.



Elastically Restrained Supports

It may happen that the actual boundary conditions do not correspond
exactly to the classification of pinned, fixed, etc. In this case elastic
springs can be incorporated into the analysis such that when the torsional
stiffness is set equal to zero we obtain the pinned or simply-supported
case, and when it is infinite we have the fully fixed boundary condition.
This allows for a range of intermediate values that can be used to reflect
varying degrees of partial restraint.



Since the elastic end constraints only affect the boundary conditions we
still have the familiar equation governing the small amplitude, harmonic,
transverse vibrations of a beam given by

d4W

dx4
+ p

d2W

dx2
− Ω2W = 0, (108)

in which

W = w/L, x̄ = x/L, p = PL2/EI , Ω2 = ρAω2L4/EI . (109)



Again, the solution is given by

W = C1 sinhαx̄ + C2 coshαx̄ + C3 sinβx̄ + C4 cosβx̄ , (110)

with
α2 =

√

(p2/4) + Ω2 + p/2

β2 =
√

(p2/4) + Ω2 − p/2.
(111)

Note the similarity between equations (111) and (15), with the slight
difference due to the definition of nondimensional load used in equation
(16) compared with equation (109).



However, with torsional end constraint the boundary conditions become

W (0) = W (1) = 0
d2W /dx̄2 − σ1dW /dx̄ = 0 at x̄ = 0
d2W /dx̄2 + σ2dW /dx̄ = 0 at x̄ = 1

(112)

where
σ1 = k1L/EI , σ2 = k2L/EI , (113)

and the k ’s are the spring stiffness at the left and right hand ends,
respectively.



Application of the above conditions leads to the characteristic equation

[

(α2 + β2)2 + σ1σ2(α
2 − β2)

]

sinhα sinβ − (114)

2σ1σ2αβ(coshα cosβ − 1)

+(σ1 + σ2)(α
2 + β2)(α coshα sinβ − β sinhα cosβ) = 0. (115)



We consider a specific case of a beam, subject to a tensile axial force,
with the left-hand end pinned (σ1 = 0), and the right-hand end subject
to a torsional spring (σ2). Thus we can examine the dynamics of the
beam ranging from zero end rotational stiffness (i.e., a pinned-pinned
beam) to infinite end rotational stiffness (i.e., a pinned-clamped beam),
to compare with some of the previous results. The figure shows how the
lowest two natural frequencies vary with tensile axial load for different
levels of end torsional restraint.
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For zero axial load we observe the frequency coefficients Ω1 = π2 and
Ω2 = 4π2 for the pinned-pinned case (i.e., σ2 = 0). The natural
frequencies increase with tensile force as expected. For pinned-fixed
boundary conditions (σ2 = ∞) we obtain the frequencies Ω1 = 15.4 and
Ω2 = 50.0. These cases are indicated by the circles. Two intermediate
cases are also shown: for σ2 = 5 and σ2 = 20. In those cases in which a
structural component makes up one element of a larger structure, or
framework, then the actual boundary conditions will typically depend on
the stiffness provided by adjacent members, and this will be the focus
later, when we consider frames.



Beams with Variable Cross-section

In this section we make use of the Rayleigh-Ritz approach to obtain the
axial load versus frequency relation for a simply supported beam with a
square cross section (h × h) and a linear taper as shown below:

w(x)

x

L

P

A schematic of a thin elastic beam whose size is a linear function of its length.

The column length is L, Young’s modulus E , and density ρ. The width
(and depth) at any distance x along the length of the column is given by

h(x) = h(0)

[

1 +
α− 1

L
x

]

, (116)

in which α = h(0)/h(L).



From this, we can compute the area and second moment of area:

A(x) = A(0) [1 + x(α− 1)/L]
2

I (x) = I (0) [1 + x(α− 1)/L]
4
,

(117)

where A(0) = h(0)2 and I (0) = h(0)4/12 are the area and second
moment of area at the left hand (smaller) end. Given simply-supported
boundary conditions we can assume a half sine wave as the fundamental
mode (we know this is exact for a prismatic beam), i.e.,
w(x) = C sinπx/L. The energy expressions for strain energy in bending,
potential energy of the loading, and kinetic energy are given by

U =
1

2

∫ L

0

EI (x)w ′′2dx (118)

VP =
1

2

∫ L

0

Pw ′2dx (119)

T =
1

2

∫ L

0

ρA(x)ẇ 2dx . (120)



These expressions can be evaluated for the assumed mode shape which
results in

U =
1

4
EI (0)LC 2

(π

L

)4
[

1 + 2(α− 1) + (2− 3/π2)(α− 1)2 +

(1 − 3/π2)(α− 1)3 + (1/5− 1/π2 + 3/(2π4))(α − 1)4

]

(121)

VP =
1

4
LPC 2

(π

L

)2

(122)

T =
1

4
LρA(0)Ċ 2

[

1 + (α− 1) + (1/3− 1/(2π2))(α − 1)2
]

. (123)

We can then make use of Lagrange’s equation or Rayleigh’s method to
obtain the natural frequency in the usual way.



We note that this result subsumes the case of a prismatic (constant cross
section) beam in which α = 1. However, in general we get

ω̄2 =

[

1 + 2(α− 1) + 1.696(α− 1)2 + 0.696(α− 1)3 + 0.317(α− 1)4 − p̄
]

[1 + (α− 1)− 0.283(α− 1)2]
,

(124)
where the natural frequency and axial load are nondimensionalized
according to

ω̄2 =
ω2

EI (0)/m(π
L
)4

p̄ =
P

EI (0)(π
L
)2
. (125)

For the prismatic beam (α = 1), we get the exact coefficients from
earlier.



The effect of a varying cross section is shown on the next page. The
linearity of the p̄ vs ω̄2 relation in part (a) is a consequence of the
single-mode assumption. By increasing the value of α we are stiffening
the beam, and hence both the critical load and natural frequency
increase. For example for a beam whose cross-sectional dimension at
x = L is twice that at x = 0, i.e., α = 2 results in a nondimensional
critical load of approximately 5.47, and a natural frequency (squared) in
the absence of axial load of about 3.3.
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(a) The frequency-load relation for various tapered columns; (b) variation of the
critical load with taper (with a sample ’exact’ result for α = 2 superimposed),
(c) variation of natural frequency with taper, when the axial load is zero.



The variable cross section does, of course, render the sine wave an
approximate mode shape. More terms in the Rayleigh-Ritz procedure can
be used. The result of using (a very accurate) six terms in just such an
expansion is also shown in the figure as an isolated data point, and
specifically for α = 2 in part (c). As the degree of taper increases the
single-mode approximation breaks down.



The analysis is simplified somewhat if it is assumed that it is the second
moment of area that varies linearly with length rather than the
cross-sectional dimension, or if a beam is a wedged shape then the area
will vary linearly with length and the second moment of area will vary as
the cube of the length, and so on. Tapered columns which are loaded by
their self-weight can also be handled, although the mass distribution
must also be taken into account. Of course, the height to which a tree
might grow is a nice example of this, although it is the lateral loading
caused by wind that ultimately limits height. It has been shown that
many trees have a natural taper of the form

R = R(0)

[

h − x

h

]3/2

, (126)

where R is the radius, R(0) the radius at the base, and h is the height.
That is, not dissimilar to the profile of the Eiffel tower. Stepped columns
that have discrete changes in their cross-sectional properties can also be
handled in this manner.
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