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Nondestructive Testing

We have seen the often near linear relation between the axial load
(providing it is less than critical) and square of the effective natural
frequency
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For example, consider a simple cantilever. The fundamental frequencies
in bending have the mode shapes
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with σ1 = 0.7341, λ1 = 1.8751 for the lowest mode and corresponding
frequency (i.e., ω1 = 3.516

√
EI/(mL4)). The buckling mode for a

cantilever with an end load is given by
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)
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with a critical load of Pcr = π2EI/(4L2).



These normalized shapes are plotted below. They are close, but unlike
the pinned-pinned (and some sliding boundary conditions) case, they are
not equal.
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Comparison of vibration and buckling mode shapes for a uniform cantilever.

However, also plotted in this figure (as the dashed line) is the buckling
mode shape corresponding to the cantilever subject to self-weight. This
is much closer to the fundamental mode of vibration, and in fact, the
difference between them is never more than 1%.



The equivalence of the vibration and buckling mode shapes results in the
linear relation between axial load and frequency, i.e., the extent to which
the vibration mode shape is changed by axial loading. Thus we have a
frequency(squared) v load relation that is closer to linearity for the
vibrations of a cantilever subject to self-weight than an end load.
However, even for the end-loaded cantilever case a simple use of
ABAQUS shows that when (P/Pcr ) = 0.51875 we obtain a lowest
natural frequency of (ω/ω0)

2 = 0.43804 compared with an estimate of
(ω/ω0)

2 = 0.41825 suggested by the linear relation.



Thus, we see the possibility of using dynamics as a means of assessing
axial load effects including the prediction of buckling. In static buckling
tests it is often unavoidable that specimens are destroyed during the
experimental procedure (often the result of plastic deformation during
large deflections). The Southwell plot is a related static approach that
also exploits a linear extrapolation to predict buckling nondestructively.
Correlation studies between dynamic response and stiffness are also used
to determine the actual boundary conditions as well. The simplicity of
this relation can be used to non-destructively test axially-loaded slender
structural elements through monitoring of dynamic response.



The Southwell Plot

We have seen how a small initial geometric imperfection tended to
amplify the lateral deflections of a strut, especially as the buckling load is
approached. In an experimental context we would typically measure the
lateral deflection over and above the initial deflection, which we can call
δ = w − w0. If we assume the initial deflection is in the form of a
half-sine wave of amplitude Q0, we can plot the amplification effect
(assuming small deflections). Thus (at the mid-point of the strut)

δ =
Q0

1− P/PE
− Q0 = Q0

P/PE

1− P/PE
. (4)

Equation (4) can be arranged in the form

δ

P
=

δ

PE
+

Q0

PE
, (5)

so that if we plot δ/P as a function of δ we get a straight line in which
the intercept is given by Q0/PE and the slope is given by 1/PE .
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The Southwell plot, (a) strut geometry with an initial imperfection, (b) axial
load - lateral deflection relation, (c) Southwell plot.

Southwell recognized the usefulness of this approach in order to
determine both the critical load and initial imperfection, and this is
shown schematically in part (c).



A Southwell plot based on experimental data is shown below:
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The Southwell plot using experimental data taken from an earlier experimental
system (Croll and Walker).

Here, the data suggests a critical load (slope) in the vicinity of 87 N and
an imperfection of ε ≈ 0.05 or about 3 degrees, values not unreasonable
when compared with the data (from the link model) presented earlier.
Although there are limitations to this approach, the key utility here is
that the linear relation allows for extrapolation. This provides some
motivation for exploring related concepts in the dynamic testing of
structures, where vibration testing in situ is a well established procedure,
e.g, in structural health monitoring.



Examples
The relation between axial load and lateral vibrations and its potential
use for non-destructive evaluation purposes goes back to Sommerfeld. He
made the simple observation that the fundamental natural frequencies of
the two systems shown below were quite different (with ω2 > ω1).

gω
1

ω
2

The effect of axial load direction on natural frequencies.

He concluded that the greater the compressive stress, the lower the
natural frequency of lateral vibration. With tensile stress, an increase in
natural frequency was observed. Furthermore, in the former case it was
noted that the frequency dropped to zero as the compressive load
approaches its critical value.



We can conduct a simple analysis of this system using the methods
developed earlier in this book. Suppose the strut has a length, l , end
mass, m, flexural rigidity, EI , and oscillates in gravity, g . Introducing the
nondimensional parameter α =

√
mg/EI it can be readily shown that

when the strut has the mass placed at its top, the natural frequency is
given by

ω =
√
gα/(tanαl − αl), (6)

which remains positive until buckling occurs at mc = π2EI/4gl2. When
the strut is turned upside down (b) the natural frequency becomes

ω =
√
gα/(αl − tanhαl). (7)

Thus, suppose we have a mass that corresponds to about the half the
critical load, i.e., m = (π2EI )/(8gl2), then α = π/(2

√
2l) and the

natural frequency of the system in part (a) would be 1.106
√

g/l , as

opposed to 1.904
√
g/l for the system in part (b). In fact, even a mass

that causes buckling in part (a) would result in oscillations of frequency
1.55

√
g/l in the inverted system (part (b)).



It is quite easy to demonstrate this experimentally using a polycarbonate
cantilever strip as shown in the inset to figure below.
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(a) A simple experimental cantilever and its frequency variation with end load
for different orientations.

We also note at this point that experiments on cantilevers with
self-weight loading are relatively easy to set up. The results from tests
using other boundary and loading conditions, e.g., in a testing machine,
need more careful interpretation.



As a reference point the typical amount of end mass the strut was able to
withstand before appreciably starting to droop to one side was about
27g. The Euler load for a cantilever is EIπ2/(4L2) which gives a value of
mc = 35g, and given the inevitable initial imperfections in the system this
magnitude is not unreasonable. Furthermore, when no end mass was
added the strut vibrated with a measured natural frequency of a little
over 6 Hz (in fact 6.075, 6.2375 and 6.4 in its upright, horizontal and
downward orientations). The theory of continuous elastic beams gives a
fundamental natural frequency for a cantilever of ω = 3.52

√
EI/mL4 and

with the total mass of the strip measured at mL = 5.94× 10−3 Kg this
corresponds to a predicted frequency of 6.38 Hz.



Returning to self-weight loading the ’weight’ parameter |α| can also be
plotted as a function of frequency squared (part (a) below). In the
absence of gravity we would expect the frequency to be proportional to
the inverse of the length squared, and this case is shown too. However, in
the upright configuration, as the critical length is approached the stiffness
is diminished such that the frequency drops to zero at the critical length.
If we plot the dimensional frequency versus the length (normalized by the
critical length) we get the results shown in part (b). However, not all the
data from part (a) are included because of different thicknesses.
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The frequencies of a simple but heavy experimental cantilever. The continuous
line represents the upright case, the dashed line represents the hanging down
orientation. (a) |α| vs. the fundamental frequency squared, (b) alternative plot
of the same results.



Thus, we might measure the fundamental natural frequency for a number
of different α values (specifically changing the length L) and fitting a
straight line to the data we would predict buckling in the vicinity of
α ≈ 7.8. Recall that in this plot the ”weight” α is a nondimensional
parameter given by α = mgL3/(EI ), and hence with mass per unit length
of 0.0147 kg/m, cross sectional dimensions of 25.4× 0.508mm and
Young’s modulus of 2.4 GPa we get the actual length at buckling of
about 0.33m. The cantilever that hangs down never buckles as the
length increases of course.



If the trend is linear then it also provides the possibility of predicting the
elastic buckling not only from, in principle, measurement of the lower
natural frequency at two distinct axial loading conditions but even when
one or more of these loads are tensile.
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Frequency content of a prismatic beam showing the shift in resonant
frequencies under the application of axial loading (Livingston et al.).

Over this frequency range the lowest three frequencies are quite distinct.
The continuous line corresponds to (practically) zero axial loading, with
the dotted line showing the shift to higher frequencies when the beam is
subject to a tensile axial load (approximately of a similar magnitude to
the Euler buckling load with boundary conditions somewhat intermediate
between clamped and pinned).



Some Background

Major contributions were made by Massonet, who considered a variety of
structural systems from a theoretical standpoint, and Lurie, who showed
the utility of this approach including experiments. Even when the mode
of vibration and buckling mode are not identical the load-frequency
(squared) relation may be almost linear. Lurie used an energy approach
to show that an upper limit for the frequency of axially-loaded thin
beams resulted in a relation

1 ≥ mω2
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∫ l
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w2dx∫ l
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+
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(
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0
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)2

dx
. (8)



For example, consider a clamped-clamped beam for which we know that
Pcr = 4π2EI/l2 and ωn(P = 0) = 22.373

√
EI/(ml4), and using the

buckling mode shape

w = A

[
1− cos

2πx

l

]
(9)

results in an expression

1 ≥ 0.9635

(
ω

ωn

)2

+
P

Pcr
. (10)

Using the lowest mode of vibration results in

1 ≥
(

ω

ωn

)2

+ 0.9704
P

Pcr
. (11)



Equations (10) and (11) are plotted as inequalities in the figure below
together with the linear relation (equation 1).
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Upper and lower bounds of the frequency-load relation for a clamped-clamped
beam.

Thus we see the possibility of exploiting the linear relation between the
square of the lowest natural frequency and the level of axial loading to
extrapolate critical conditions.



Underlying General Theory
We have repeatedly looked at systems with a stiffness that tended to be
diminished by the presence of (compressive) axial loading. In terms of
potential energy we can write this as

V = U(qi )− ηkE
k(q)i , (12)

with the quadratic approximation in the form of the inner product

V =
1

2
< q, (U − ηkE

k)q >, (13)

where the ηk(k = 1, 2 . . .m) are independent parameters, and U is the
strain energy (symmetric and positive definite). In terms of the equations
of motion we use Lagrange’s equation to obtain

Mq̈ + (U − ηkE
k)q = 0, (14)

and assuming harmonic motion in the usual way, q = ueλt , we obtain the
characteristic equation

|Mλ2 + U − ηkE
k | = 0. (15)



For conservative systems we have λ = iω with λ2 identified as the
negative of the square of the natural frequencies. We are, of course,
primarily interested in systems for which q = 0 represents a stable system
but may become unstable (at buckling), and this occurs when one of the
eigenvalues vanishes. Although instability may occur via a complex pair
of eigenvalues in non-conservative systems (flutter, e.g., Beck’s problem)
we are primarily focused on the conditions under which a real eigenvalue
vanishes at the divergence boundary.



The relation between ω2 and ηk constitutes the characteristic curve (or
surface, when more than one parameter is present). It has been proven
that for conservative systems with a trivial equilibrium state, any number
of degrees of freedom, and equations of motion that are linear in the
parameters ηk , the surface involving the fundamental frequency cannot
have convexity toward the origin. Furthermore, it also follows that the
fundamental surface is a plane (or straight line for a system with a single
parameter) if the matrices M, U, and E k can be reduced to a diagonal
form simultaneously.



The divergence boundary is contained in the characteristic curve and
obtained by setting ω2 = 0. If a single parameter ξ (load) is acting on
the system, then it is possible to obtain an (upper bound) estimate of the
critical value. From the figure below we see that if we know the
frequencies at two values of the loading parameter ξ: ω2

11(ξ1) and ω2
12(ξ2)

we can gain an estimate of frequencies at other loading values. Of
course, if the characteristic curve is a straight line (e.g., if the equations
uncouple) then this estimate will be exact. By extrapolating a line joining
them we obtain an upper bound on the critical value of ξ from the
intersection with the ξ-axis.
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Convexity of the characteristic curve and its implication for providing a lower
bound (Huseyin).



Snap-Through Revisited

In snap-through buckling we might still expect to monitor the lowest
natural frequency to predict instability but the nonlinearity of the
underlying equilibrium curve can also have an influence. We consider the
dynamics of a system in the vicinity of a saddle-node bifurcation:

Ẍ − X 2 − λ = 0, (16)

where both the deflection X and the load parameter λ are measured from
the origin. Now suppose we have an equilibrium position (Xe) and we
wish to study the behavior of small oscillations about it. We can expand
equation (16) in the usual way by replacing X by Xe + x which leads to

ẍ − X 2
e − 2Xex − x2 − λ = 0. (17)



The x2 term can be dropped because it is small, and due to equilibrium
we also have −X 2

e − λ = 0, and thus we are left with the linearized
equation of motion

ẍ − 2Xex = 0. (18)

This system has the natural frequency

ω =
√
−2Xe =

√
+2(−λ)1/2, (19)

and thus, for large negative λ say, we observe a linear relation between
the loading parameter and the fourth power of the natural frequency.



Effect of Damping

So far we have concentrated mainly on undamped systems. In most of
the mechanical systems of interest there is usually a little energy
dissipation and we shall assume that this takes the form of a linear
viscous damping. Thus we consider

Ẍ + βẊ − X 2 − λ = 0. (20)

Conducting a similar analysis to the previous section we arrive at
relationships between the natural frequency (the harmonic factor in the
decaying, oscillating motion) and load parameter of

ω2 = ±2(−λ)1/2 − (β/2)2,
ω4 = 4(−λ)± 4(−λ)1/2(β/2)2 + (β/2)4.

(21)



These expressions are plotted below for three values of damping including
the undamped case.
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We see that damping has the effect of causing the natural frequency to
diminish to zero prior to buckling. For example, with a damping level of
β = 2 (and assuming the damping coefficient is constant) we observe that
oscillations will cease when the load reaches a value of about λ = −0.25.



We can again integrate the equation of motion while slowly sweeping
through the load parameter (as was done earlier). For example, the figure
below shows nine trajectories generated for the system equation (20) and
using a constant value of the initial total energy with β = 0.5, λ evolved
at the rate 30t, with the initial conditions prescribed by
ẋ(0) = 0.0, x(0) = −

√
300 + A, where A varied between -8 and 8 in

increments of 2.
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Some trajectories plotted as time series as the system is swept toward the
saddle-node bifurcation.



A simple experimental verification of this situation is shown below. Here,
a flexible rod with an end mass in a heavily postbuckled configuration
was subject to base rotation such that a saddle-node bifurcation was
encountered. The base rotation can be thought of as control in our
standard system of gravity acting on the mass.
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(a) A flexible strut with an end mass, (b) control surface showing a transition
through bifurcation.



The measured frequencies and their relation to the control parameter are
shown plotted below. Part (b) shows some times series in which the
parameter r is a measure of the rate at which the base is rotated. We see
that raising the frequency to the fourth power provides a more linear
relationship then for the second power with which to predict criticality.
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(a) Measured frequencies for the flexible strut rotated through a saddle-node
bifurcation, (b) some sample time series with different rates of rotation.



Range of Prediction
We note that damping, changing boundary conditions, initial
imperfections, type of instability, etc., all conspire to make predictions
more difficult.
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The load-frequency (squared) relation for (a) rectangular duraluminum plate,
(b) laminated composite column. (Chailleux et al.)

Shown here are results from a laminated composite column in which the
authors identified three distinct regions, with region II providing the most
useful (linear) relation for prediction purposes. Also in part (b), the
authors noted that with very low load levels they experienced some
clearance in the boundary conditions.



Given that raising the frequency to either the second or fourth power
might be a more appropriate predictor, it seems reasonable to raise the
frequency to various powers in order to see how the subsequent curve
might change from concave to convex, which then has clear implications
for lower bound estimates. Plaut and Virgin studied the effect of
extrapolating frequency raised to various power with a special reference
for the range over which data were measured. That is, by raising the
frequency to various powers a value is reached whereby the relation
changes from convex to concave, with the transition point providing a
close-to-linear relationship.



A Box Column

A notable piece of work on the dynamic non-destructive evaluation of
structures was conducted by Jubb, Phillips and Becker. The authors
conducted some tests on box columns, which provided a clever way of
studying plates incorporating simply-supported edges. One of their main
goals was to establish a means of assessing the effects of residual stresses
on the stiffness, dynamics and stability of a typical structure. They
suggested using the following variation on the frequency (f )-load (σ)
theme

k
σr

σcr
+

σa

σcr
+

(
f

f0

)2

= 1. (22)

In this expression, the residual stress, σr , is added to the external stress,
and k is a constant (less than unity) that takes account of stress
distribution.



In the experiments of Jubb et al. they chose an aspect ratio of 4. In the
absence of axial load, if the frequency corresponding to 4 half sine waves
in the longitudinal direction (m = 4) is denoted by 1.0, the lower modes
turn out to have relative frequencies of 0.610 (m = 3), 0.391 (m = 2)
and 0.282 (m = 1). As the axial force increases, these frequencies
decrease (linearly with frequency squared) but at different rates such that
it is the m = 4 mode that drops to zero at buckling (i.e., P/Pcr = 1).



The experimental results are shown below.
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The four lowest frequencies for the box column plotted as a function of the
applied axial load. Adapted from Jubb et al.

The welded corners induce a degree of residual stress such that the
initiation of an applied axial load does not correspond to zero axial load
in the frequency-load relation. Also, a degree of post-buckling stiffening
is apparent in each of the modes. Therefore it may be important to
monitor the first few lowest natural frequencies in order to capture the
appropriate buckling mode.



Plates and Shells
A thorough body of work on non-destructive testing of cylindrical shells
under axial loading using dynamic (vibration) characteristics is due to
Singer and his colleagues. An example of this type of research is shown
below:
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The lowest vibration frequency of an axially-loaded cylinder. (a) frequency
squared, (b) frequency raised to the power q = 2.9. Adapted from Singer et al.

The cylinder included rib-stiffeners, which had the effect of reducing
some of the imperfection-sensitivity typically encountered in
axially-loaded shells. Part (a) shows a conventional frequency-squared
versus load plot. Part (b) shows the same data with the frequency raised
to the 2.9th power.



The figure shows a plot in which (lower load level) frequencies are raised
to various powers and then extrapolated.
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The same frequencies as in the previous slide but raised to various powers and
subsequently extrapolated (linearly) to the buckling load. Adapted from Singer
et al.
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